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EVOLUTIONARY MODEL OF FINITE-STRAIN THERMOELASTICITY

UDC 539.3A. A. Rogovoi and O. S. Stolbova

The equation of state of finite-strain thermoelasticity is obtained using a formalized approach to con-
structing constitutive relations for complex media under the assumption of closeness of intermediate
and current configurations. A variational formulation of the coupled thermoelastic problem is pro-
posed. The constitutive equation, the heat-conduction equation, the relations for internal energy, free
energy, and entropy, and the variational formulation of the coupled problem of finite-strain thermoe-
lasticity are tested on the problem of uniaxial extension of a bar. The model adequately describes
experimental data for elastomers, such as entropic elasticity, temperature inversion, and temperature
variation during an adiabatic process.

Key words: thermoelasticity, finite strains, slight compressibility, constitutive equations, heat-
conduction equation, testing of model.

Introduction. In [1–5], a decomposition of the total site gradient into elastic, inelastic, and temperature
gradients, which is similar in form to the well-known Lie expansion but free from the drawbacks of the latter, was
constructed within the framework of the kinematics determined by superposition of elastic–inelastic site gradients
(which transform an intermediate configuration to a close current configuration) on final elastic–inelastic gradients
(which transform the initial configuration to an intermediate). Based on the laws of thermodynamics and the prin-
ciple of objectivity, it has been shown that the inelastic and temperature site gradients should be pure deformations
without rotations. In view of this requirement, the missing relationship was obtained between small inelastic strains
eIN with known constitutive relations, and small inelastic rotations dIN , and also between small temperature strains
eΘ with known constitutive relations and small temperature rotations dΘ. Stress and entropy relations following
from thermodynamics were obtained and the heat-conduction equation is constructed. The equations of state for
finite thermo-elastic–inelastic deformations were written for an intermediate configuration close to the current one.
In the fourth-rank tensor determining the material properties in an intermediate configuration and dependent only
on elastic kinematics, the constants were assumed to be functions of temperature and scalar structural parameters
determined by inelastic kinematics.

In the present work, a model for thermoelastic behavior at finite strains is constructed using the theoretical
notions listed above and is tested on a simple problem, for which there is a large body of experimental data.

As noted in [6], finite-strain thermoelasticity is a classical and elaborate theory of nonlinear continuum
mechanics. Fundamental papers give a thermodynamic foundation of the kinematics proposed to describe the
thermoelastic process (see, for example, [6–8] and the bibliography therein). In the present work, thermoelastic
relations are obtained using the general approach to constructing the constitutive equations of elastic–inelastic media
at finite strains [1–5], which is based on the kinematics constructed under the assumption of closeness of intermediate
and current configurations and allow a description of elastoplastic process [1] and viscoelastic process [2]. Elastic
behavior is described by a relation in which both slight compressibility and incompressibility and the dependence
of the three-dimensional modulus and shear modulus on the volume variation are taken into account via one of the
generalized elastic moduli [9–12].
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1. Constitutive Thermoelastic Equation and Heat-Conduction Equation. In [1–3], equivalent
forms of the equations of state for finite elastic–inelastic strains with respect to an intermediate configuration close
to the current configuration are constructed using the kinematics determined by the superposition of small strains
(site gradients) on finite strains for the case where the constants of the elastic potential do not depend on inelastic
strains. We use the approach developed in [1–3] to construct the equation of state for a thermoelastic material in
an intermediate configuration. In [3], the true-stress tensor is represented as

T = 4J−1F ·
[ t∫

0

(
F

3◦ ∂2W

∂C2
E

· F t
)
··DEdτ

]
· F t. (1.1)

Here F is the total (in this case, thermoelastic) site gradient, J = I3(F ) is the third invariant F (the Jacobian
determining the relative volume variation), CE is the Cauchy–Green elastic strain measure, DE = ėE is the elastic
displacement rate deformation, which, in this case, coincides with the elastic strain rate, W is the elastic potential,
whose constants for thermoelastic processes, according to [3], depend on the absolute temperature Θ as on a

parameter: Θ = Θ(t). The notation A
3◦ BIV denotes the scalar premultiplication of the second-rank tensor A by

the third basis vector of the fourth-rank tensor BIV. According to [3–5], the kinematic tensors are given by the
expressions

F = FE · FΘ = (g + εh) · F∗ = [g + ε(hE + hΘ)] · F∗, F∗ = FE∗ · FΘ∗. (1.2)

Here and below, the quantities with the subscript “∗” correspond to the intermediate configuration (time t∗), and the
quantities without it to the close current configuration (time t); the closeness of these configurations is characterized
by the small positive quantity ε, g is the unit tensor, h = hE +hΘ, hE, and hΘ are the gradients of the vectors of the
small total, elastic, and temperature displacements with respect to the intermediate configuration [these gradients
are represented as the sum of symmetric gradients e, eE , and eΘ (small total, elastic, and temperature strains] and
skew-symmetric gradients d, dE , and dΘ (small total, elastic, and temperature rotations), such that e = eE + eΘ

and d = dE +dΘ]; CE = F t
E ·FE and FE and FΘ are the elastic and temperature site gradients, respectively, written

as

FE = (g + εhE) · FE∗, FΘ = (g + εF−1
E∗ · hΘ · FE∗) · FΘ∗.

The gradient FΘ corresponds to pure deformation without rotation, i.e., in the polar decomposition FΘ = RΘ ·UΘ,
the orthogonal tensor RΘ = g. As shown in [5], assuming that eΘ is given by the linear temperature-expansion law
eΘ = βθg, where β is the linear temperature-expansion coefficient and θ is a small temperature variation, we have
dΘ = 0. Since d = dE + dΘ, we have dE = d. As a result, we obtain

FE = [g + ε(h − βθ)] · FE∗, FΘ = UΘ = (1 + εβθ)UΘ∗. (1.3)

In relation (1.1), the integral from 0 to t is represented as two integrals: from 0 to t∗ and from t∗ to the
time t close to t∗, and the temperature, which is one of the arguments of the elastic potential W and depends on
the current time t, is represented as Θ = Θ∗ + εθ. Then,

∂2W (Θ)
∂C2

E

=
∂2W (Θ∗ + εθ)

∂C2
E

=
∂2W (Θ∗)

∂C2
E

+ εθ
∂3W (Θ)
∂Θ ∂C2

E

∣∣∣
Θ=Θ∗

.

As a result, using relations (1.2) and proceeding in the same way as in the derivation of expression (4.7) in [3], we
write the constitutive equation (1.1) for the intermediate configuration as

T = [1 − εI1(e)]T∗ + εh · T∗ + εT∗ · ht + εθ(T,Θ)∗ + εL̃IV
6 ·· eE . (1.4)

This approximate equation reduces to the evolutionary differential equation with the Truesdell objective derivative

T Tr = θ̇T,Θ + LIV
6 ·· ėE , (1.5)

where θ̇ = Θ̇. In relation (1.4), T∗ and (T,Θ)∗ are the true stresses and their derivatives with respect to temperature
in the intermediate configuration, respectively, I1 is the first invariant, and L̃IV

6 is a fourth-rank tensor that defines
the response of the material to small elastic strains with respect to the intermediate configuration:

L̃IV
6 = 4J−1

∗ F∗ ·
(
F∗

3◦ ∂2W

∂C2
E

∣∣∣CE=CE∗
Θ=Θ∗

2∗ F t
∗
)
· F t

∗ ; (1.6)
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the notation BIV 2∗ A denotes the scalar multiplication on the right of the second-rank tensor A by the second
basis vector of the fourth-rank tensor BIV. In relation (1.5), the fourth-rank tensor LIV

6 defines the response of the
material to the elastic strain rates with respect to the current configuration and is written in the form of (1.6),
where all kinematic quantities and temperature determined in the current rather than intermediate configuration.

It is easy to show that, in expression (1.5), the tensor T,Θ ≡ ∂T/∂Θ is represented as

T,Θ = [1 − εI1(e)](T,Θ)∗ + εh · (T,Θ)∗ + ε(T,Θ)∗ · ht + εθ(T,ΘΘ)∗ + εL̃IV
6,Θ ·· eE ,

L̃IV
6,Θ = 4J−1

∗ F∗ ·
(
F∗

3◦ ∂3W

∂Θ ∂C2
E

∣∣∣CE=CE∗
Θ=Θ∗

2∗ F t
∗
)
· F t

∗ .

(1.7)

Expression (1.7) is similar to (1.4). The structure of relations (1.4), (1.6), and (1.17) shows how it is possible to
construct higher-order derivatives of the stress with respect to temperature.

To describe finite strains of a medium which, in the initial state, is an isotropic slightly compressible elastic
material, we use the elastic potential proposed in [9–12]:

W = Ŵ + σ(J2
E − 1) − α(σ − χ1)2/2, JE = I3E(FE).

Here

Ŵ = k1(Î1 − 3) + k2(Î2 − 3), σ = χ1 + χ2(J2
E − 1),

χ1 = p1(Î1 − 3) + p2(Î2 − 3), χ2 = χ20 + q1(Î1 − 3) + q2(Î2 − 3),

Î1 = I1E − (I3E − 1), Î2 = I2E − 2(I3E − 1), α = 1/χ2,

I1E , I2E , and I3E = J2
E are invariants of the tensor CE = F t

E · FE , k1, k2, p1, p2, q1, q2, and χ20 are material
parameters, which, as shown in [9–12] obey the relations 2(k1 + k2) = G, pi = pi0G, and qi = qi0G for i = 1, 2 (G is
the shear modulus). Then, in view of relation (1.6), the last term in (1.4) can be written as

L̃IV
6 ·· eE = 4J−1

∗ {(c1 − σ∗)I3E∗[Y · eE · Y − Y (Y ·· eE)]

+ I3E∗[Y (Φ∗ ·· eE) + (Φ∗ − 2I3E∗Y )(Y ·· eE)]G[p10 + q10(I3E∗ − 1)]

+ [Φ∗(Φ∗ ·· eE) − Φ∗ · eE · Φ∗ + 2I3E∗(Y · eE · Y − (Y ·· eE)Y )]c2 + I3E∗[I1E∗Y (Φ∗ ·· eE) − Y (X ·· eE)
(1.8)

+ (I1E∗Φ∗ −X − 4I3E∗Y )(Y ·· eE)]G[p20 + q20(I3E∗ − 1)]+ I2
3E∗[χ20 +G(q10(Î1E∗ − 3)+ q20(Î2E∗ − 3))]Y (Y ·· eE)},

ci = ki + G[pi0 + (1/2)qi0(I3E∗ − 1)](I3E∗ − 1) (i = 1, 2),

σ∗ = χ20(I3E∗ − 1) + G{[p10 + q10(I3E∗ − 1)](Î1E∗ − 3) + [p20 + q20(I3E∗ − 1)](Î2E∗ − 3)},
where Y = F∗ ·C−1

E∗ · F t
∗ , X = F∗ ·CE∗ ·F t

∗ , and Φ∗ = F∗ · F t
∗ is the Finger strain measure tensor, whose invariants

coincide with the corresponding invariants of the tensor C∗. In relation (1.8), the small elastic strains are represented
as the difference of the small total and temperature strains eE = e − eΘ, and this completes the construction of
the constitutive equation (1.4) for the thermoelastic behavior of materials at finite elastic (slightly compressible
material) and temperature strains.

We assume that the shear modulus G (and, hence, the quantities p1, p2, q1, and q2), through the material
parameters k1 and k2, and the quantity χ20 depend on temperature. We represent this relation in the general form

γi = γi0 +

Θ∫

Θ0

γi1(Θ1) dΘ1 = γi∗ + εγi1∗θ, θ = Θ − Θ∗,

γi∗ = γi0 +

Θ∗∫

Θ0

γi1(Θ1)dΘ1, γi1∗ = γi1(Θ∗)
(1.9)

(Θ0 is the absolute temperature at the initial time for the entire process). From this, it follows that
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γi,Θ = γi1(Θ) = γi1(Θ∗ + εθ) = γi1∗ + εγi2∗θ, γi2∗ = γi1,Θ

∣∣∣
Θ=Θ∗

,

γi,ΘΘ = γi1,Θ = γi2(Θ∗ + εθ) = γi2∗ + εγi3∗θ, γi3∗ = γi2,Θ

∣∣∣
Θ=Θ∗

, (1.10)

etc. Let γ1 = k1, γ2 = k2, γ3 = χ20, and γ4 = G = 2(k1 + k2) = 2(γ1 + γ2). Then, in relation (1.6), the constants
k1, k2, χ20, and G included in expressions (1.8) need to be replaced, according to (1.9), by the quantities k1∗, k2∗,
χ20∗, and G∗; in relation (1.7), they need to be replaced, according to (1.10), by the quantities k11∗, k21∗, χ201∗,
G1∗, etc. This makes it possible to calculate the tensors T (1.4) and T,Θ (1.7) and higher-order derivatives of the
stress with respect to temperature using a unified algorithm.

Similarly to the recursive relations (1.4) and (1.7), we construct a recursive relation for the functional W1

obtained in [3, 4]:

W1 =

t∫

0

JT (Θ) ··DE dτ =

t∗∫

0

JT (Θ∗ + εθ) ··DE dτ +

t∫

t∗

JT (Θ) ··DE dτ

=

t∗∫

0

J [T (Θ∗) + εT,Θ(Θ∗)θ] ··DE dτ + εJ∗T∗ ·· eE .

From this, we have the relation

W1 = W1∗ + εθ(W1,Θ)∗ + εJ∗T∗ ·· e − εβ∗θJ∗I1(T∗), (1.11)

and the following relation, which is easily obtained and extended to higher-order derivatives with respect to tem-
perature

W1,Θ = (W1,Θ)∗ + εθ(W1,ΘΘ)∗ + εJ∗(T,Θ)∗ ·· e − εβ∗θJ∗I1((T,Θ)∗). (1.12)

Relations (1.11) and (1.12) were derived taking into account that eE = e − eΘ = e − βθg.
In the case of thermoelasticity, the heat-conduction equation obtained in [4] [relation (2.12)] has the form

AΘ̇ + BΘ = ρΩ̇ + ∇̃ · (λ∇̃Θ),

A = Θ
(
β,ΘI1(T ) + βI1(T,Θ) − J−1W1,ΘΘ

)
+ J−1ρ0cT , (1.13)

B = β(I1(T )I1(D) + I1(Ṫ )) − T,Θ ··D.

Here ρ0 and ρ are the density of the material in the undeformed and current configurations, cT is the heat capacity
at zero stress, Ω̇ is the rate of heat production by internal sources in unit mass, λ is the thermal conductivity,
and ∇̃ is the Hamiltonian for the current configuration. In [4], the expressions for A and B were derived from
relation (2.12) taking into account that

d

dt
(W1,Θ) = θ̇W1,ΘΘ + JT,Θ ··D − βθ̇JI1(T,Θ). (1.14)

The last relation is obtained from Eq. (1.12) written as

ΔW1,Θ = W1,Θ − (W1,Θ)∗ = (W1,ΘΘ)∗ΔΘ + J∗(T,Θ)∗ ··Δe − β∗J∗I1((T,Θ)∗)ΔΘ

(ΔW1,Θ is the increment of W1,Θ, ΔΘ = εθ is the temperature increment Θ, and Δe = εe is the strain increment) by
dividing its left and right sides by the time increment Δt and passing to the limit as Δt → 0 under the assumption
that all limits exist.

The boundary conditions for the heat-conduction equation (1.13) are written as

Θ
∣∣∣
SΘ

= ΘS , N · q
∣∣∣
Sq

= qn, S = SΘ ∪ Sq,

where N is the outward unit normal to the surface in the current configuration, S is the total surface of the body
in the current configuration, and the parts of the surface SΘ and Sq can be empty sets. Assuming that the heat
flux q obeys the Fourier law q = −λ∇̃Θ, we find the boundary conditions of the first and second kinds
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Θ
∣∣∣
SΘ

= ΘS , −N · λ∇̃Θ
∣∣∣
Sq

= qn. (1.15)

Setting qn = αs(Θ−Θc) (αs is the heat-transfer coefficient and Θc is the absolute ambient temperature), we obtain
boundary conditions of the third kind. The initial conditions for the heat-conduction equation are Θ(x, t0) = Θ0(x).

2. Variational Formulation of the Boundary-Value Thermoelastic Problem. The relations de-
scribing quasistatic thermoelastic processes contain an equilibrium equation, kinematic and constitutive equations,
boundary conditions (generally, mixed) for displacements on the surface Su and stresses on the surface Sp, and the
heat-conduction equation (1.13) with boundary (1.15) and initial conditions. Applying the standard Galerkin pro-
cedure to the equilibrium and heat-conduction equations and the boundary conditions for stresses and temperature
in the form (1.15) and taking into account the constraints imposed on the displacements on the surface Su and
on the temperature on the surface SΘ provided that displacement and temperature variations are independent of
each other, we obtain the well-known weak (variational) coupled formulation of the thermoelastic problem in the
generalized Lagrange form for the initial configuration and any time t:

1
2

∫

V0

PII ·· δC dV0 −
∫

V0

ρ0f · δu dV0 −
∫

S0

Jsp · δu dS0 = 0,

∫

V0

J [λ∇Θ · C−1 · δ(∇Θ) + (AΘ̇ + BΘ)δΘ] dV0 −
∫

V0

ρ0Ω̇δΘ dV0 +
∫

S0

JsqnδΘ dS0 = 0.

(2.1)

Here V0 and S0 are the volume and total surface of the body in the initial configuration, PII is the Piola–Kirchhoff
symmetric stress tensor, C is the Cauchy–Green total strain measure, f , p are the mass and surface forces, u is the
total displacement vector, Js = J

√
n · C−1 · n is the Jacobian which defines the relative change of the current and

initial surfaces, n is the outward unit normal to the surface in the initial configuration, and ∇ is the Hamiltonian
in the initial configuration. Setting PII = JF−1 · T · F−t, from relation (1.4) we obtain

PII = (PII)∗ + εθ(PII,Θ)∗ + εJ∗F−1
∗ · (L̃IV

6 ·· eE) · F−t
∗ . (2.2)

3. Testing of the Model. The constitutive equation and the heat-conduction equations constructed in
the present paper and the free-energy and entropy relations obtained in [4] were tested on a simple problem of bar
tension (uniaxial state of stress), for which there are many experimental data. We consider only those processes
in which the stress and the temperature fields are uniform. Although the fields are uniform, we solve the problem
using the variational equations (2.1), which provides further testing of the equations.

The extension process of an initially isotropic rectilinear bar along the z axis is divided into a number of small
steps. Then, in Cartesian coordinates, the positions of a point in the nth step (in the intermediate configuration)
and in the (n + 1)th step (in the current configuration close to the intermediate configuration) are given by the
radius vectors

R∗ = α1∗(xi + yj) + α2∗zk, R = α1(xi + yj) + α2zk.

Here the basis vector k is directed along the bar, and other two basis vectors lie in the plane of its cross section;
α1 = α1∗ + εξ and α2 = α2∗ + εη, where α1∗ and α2∗ are the relative elongations of the bar in the transverse and
axial directions in the current and intermediate configurations, respectively, and ξ and η are their increments. In
this case, α2∗ and η are specified quantities and α1∗ is known from the solution of the problem in the previous
step. As above, the closeness of the intermediate and current configurations is determined by the small positive
parameter ε. From these relations, we find the displacement vector which transforms the intermediate to the current
configuration:

u = R − R∗ = ξ(xi + yj) + ηzk.

Using the standard procedure, we construct the Hamiltonian for the intermediate configuration:
∗
∇=

1
α1∗

(
i

∂

∂x
+ j

∂

∂y

)
+

1
α2∗

k
∂

∂z

and determine the total small strain tensor that arises in transition from the intermediate to the current configura-
tion:
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e =
ξ

α1∗
(ii + jj) +

η

α2∗
kk.

The site gradient is represented as

F = (∇R)t = F∗ + ε[ξ(ii + jj) + ηkk], F∗ = α1∗(ii + jj) + α2∗kk, (3.1)

and the Cauchy–Green strain measure C = F t · F as

C = C∗ + 2ε[α1∗ξ(ii + jj) + α2∗ηkk], C∗ = α2
1∗(ii + jj) + α2

2∗kk.

Here we retain only linear terms in ε. From the last relation, we find the variation of the Cauchy–Green strain
measure

δC = 2α1∗ δξ (ii + jj), (3.2)

since the quantities with the subscript “∗” and η are specified (their variations are equal to zero).
Because the external loads on the lateral surfaces of the bar are zero and because the stress field is uniform,

only the axial components T = T 33kk of the true stress tensor are different from zero. In view of relations (3.1),
from this it follows that the second Piola–Kirchhoff tensor has the same representation PII = P 33

II kk in both the
current and intermediate configurations. As a result, taking into account relation (3.2), the first variational equation
in (2.1) reduces to the equation (P 11

II + P 22
II )δξ = 0, which, by virtue of the arbitrariness of δξ and with allowance

for relation (2.2) and relation eE = e − βθg, is written as

a11ξ/α1∗ + a12θ = b1η/α2∗, a11 = Q11(ii + jj) + Q22(ii + jj),

a12 = (P 11
II,Θ)∗ + (P 22

II,Θ)∗ − β∗(Q11(g) + Q22(g)), (3.3)

b1 = −[Q11(kk) + Q22(kk)].

Here Qkl(M) are the components of the second-rank tensor Q written in a Cartesian basis and dependent on the
second-rank tensor M : Q(M) = J∗F−1∗ ·K(M) ·F−t∗ . The second-rank tensor K(M) = L̃IV

6 ··M is easy to calculate
using relation (1.8), in which the tensor eE is replaced by the corresponding tensor M , which is equal to ii+jj, kk

or the unit tensor g. In the case of an isothermal process, the second equation in (2.1) vanishes since the temperature
(uniform) is specified (hence, δΘ = 0), and, in Eq. (3.3), only one unknown ξ is retained. If the process adiabatic
and the temperature field is uniform, then, qn = 0 and ∇Θ = 0 in the second equation in (2.1), and this equation
becomes (AΘ̇+BΘ−ρ0Ω̇)δΘ = 0. Therefore, by virtue of the arbitrariness of δΘ, the expression in brackets should
vanish. Multiplying this expression by the small quantity Δt — the time of transition from the intermediate to
the current configuration — and using expressions (1.13) for the coefficients A and B, the relationship between the
small total, elastic, and temperature strains, and the relations Θ̇Δt = εθ, DΔt = εe, and ṪΔt = εΓ [εΓ is the right
side of expression (1.4), which does not contain T∗], and Ω̇Δt = εω, we obtain

a21ξ/α1∗ + a22θ = b2η/α2∗ + ρ0ω, a21 = Θ∗[β∗I1(K(ii + jj)) − (T,Θ)∗ ··(ii + jj)],

a22 = Θ∗[(β,Θ)∗I1(T∗) + 2β∗I1((T,Θ)∗) − β2
∗I1(K(g)) − J−1

∗ (W1,ΘΘ)∗] + J−1
∗ ρ0(cT )∗, (3.4)

b2 = −Θ∗{β∗[2T 33
∗ + I1(K(kk))] − (T,Θ)∗ ··kk}.

Solving Eq. (3.3) in the (n+1)th step (in the case of an isothermal process) or system (3.3), (3.4) (in the case
an adiabatic process) and knowing, as a result, the increments of the elongation ξ and temperature θ, we determine
the elastic and total site gradients from relations (1.3) and (3.1) the stress tensor and its derivative with respect
to temperature from relation (1.4) and (1.7), and the functional W1 and its derivative with respect to temperature
from relations (1.11) and (1.12); the obtained quantities will be the initial data for the next step.

In the numerical calculation, the initial temperature Θ0 was set equal to 293 K. The material constants at this

temperature were taken from [10–12] for 2959 grade rubber and had the following values: k1
(1.9)
= k10 = 0.25 MPa,

k2
(1.9)
= k20 = 0.25 MPa, p10 = 1, p20 = 0.425, q10 = 374, q20 = 300, and χ20

(1.9)
= χ200 = 770 MPa. Here the

notation
(1.9)
= means “equal according to relation (1.9).” In the interval [Θ0, Θ0 + 100 K], a linear temperature

dependence of k1, k2, and χ20 is adopted. In the notation adopted in (1.9), this means that k11(Θ), k21(Θ), and
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Fig. 1. Temperature variation for adiabatic extension of the bar: (a) general view; (b) initial portion
of the curve shown in Fig. 1a.

χ201(Θ) are constants. The following values of these constants were assumed: k11 = k21 = 0.8 · 10−3 MPa/K,
χ201 = −2 MPa/K. Because the initial shear modulus G = 2(k1 +k2) is defined in terms of the constants k1 and k2,
it is linearly dependent on temperature, which agrees with both experimental data (see, for example, [13]) and the
conclusions drawn from the propositions of statistical physics (see, for example, [14]): G = NkΘ (N is the number
of chains in an elastomeric grid per unit volume and k is Boltzmann constant). The last relation is represented
as G = G0 + (G0/Θ0)(Θ − Θ0), where G0 = NΘ0. This relation is put in correspondence with the expression
G = 2(k10 + k20) + 2(k11 + k21)(Θ−Θ0). Taking into account the equality of the coefficients at Θ−Θ0 to the zero
and first powers in these relation and setting k11 = k21, we obtain the above values of k11 and k21 for the specified
quantities k10 and k20.

Experimental data on the temperature variation of the three-dimensional modulus for the same rubber are
given in [15]. It has been shown that, as the temperature varies from Θ0 to Θ0+110 K, the three-dimensional modulus
decreases by 28% and this variation can be considered linear within the confidence interval of the experiment.
These data were used to determine the value of the coefficient χ201. In the temperature range considered, the linear
temperature-expansion coefficient β was considered constant (data on its temperature dependence are not available)
and equal to 13.5 · 10−5 K−1 [16]. The initial density of the material was set equal to ρ0 = 1.21 · 103 kg/m3 [16].
The value of the specific (per unit mass) heat capacity at zero stress cT is taken from a reference book [17]. The
heat capacity was assumed to depend linearly on temperature in the range considered. In the notation used in
relation (1.9), it was assumed that cT0 = 1.9 · 10−3 MJ/(kg ·K) and cT1 = 0.01 · 10−3 MJ/(kg ·K2).

The bar was extended by a factor of 1.8 at a constant elongation rate of 0.1 sec−1 within 1000 steps. Figure 1
shows the temperature variation during the adiabatic extension of the bar. The results given in Fig. 1 are in good
agreement with the data of [18] both qualitatively and quantitatively. The quantitative agreement is apparently
accidental since, in the present study and in [18], different materials were considered. A temperature decrease is
usually associated with expansion of the sample, and its increase with a volume decrease (see, for example, [18]).

Figure 2 shows the relative volume variation ΔV during adiabatic expansion of the bar. One can see that
the temperature and volume variations are in good correlation.

The variation of the single component of the true stress tensor T 33 during adiabatic extension of the bar
is given in Fig. 3 (curve 1). Because of the small temperature variation, curve 1 almost coincides with the curve
constructed by analytical solution of the problem of isothermal extension of the bar (see [9]).

The bar extension problem is of interest since it allows one to link the single nonzero stress to the free and
internal energies, entropy, and temperature. Indeed, in the case of a thermoelastic process, the natural dissipation ϕ

(see [4]) is represented as

T ··D = ρ(Ψ̇ + Θ̇s) or T ··D = ρ(u̇ − Θṡ). (3.5)

Here Ψ, u, and s are the specific (per unit mass) free, internal energy, and entropy linked by the relation Ψ = u−Θs.
The expression for the free energy obtained in [4] is written as Ψ = W1/ρ0 + Ψ2(Θ), where the functional W1 is
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Fig. 3. Variation of the true-stress tensor component during adiabatic
extension of the bar: curves 1–3 refer to T 33, Ts, and Tu, respectively.

defined by relation (2.7) in [4] and the function Ψ2(Θ) by relation (2.9). Taking into account that Ẇ1 = JT ··D +
θ̇W1,Θ − βθ̇JI1(T ) [the relation was obtained from (1.11) in the similar way as relation (1.14) was obtained from
(1.12)] and using the expression for the entropy (relation (2.10) in [4]), we have

Ψ̇ = ρ0J
−1T ··D − sΘ̇, u̇ = ρ0J

−1T ··D + Θṡ. (3.6)

Therefore, expressions (3.5) become identical equalities. Moreover, since in a thermoelastic adiabatic process, the
entropy does not vary and it set equal to zero, from expressions (3.5) it follows that T ··D = ρΨ̇ in both isothermal
and adiabatic processes, or T ··D = ρu̇ in an adiabatic process. Therefore, the above relations become identities [in
view of expressions (3.6) for such processes].

In the case of an isothermal process, the second relation in (3.5) provides an estimate for the contribution of
the internal energy and entropy to the production of axial stress. According to (3.1), in the bar extension problem,
the displacement rate gradient l = Ḟ · F−1, whose symmetric part defines the strain rate tensor D, is represented
as l = (ξ̇/α1)(ii + jj) + (η̇/α2)kk. Setting ξ̇ Δt = εξ and η̇ Δt = εη, from Eq. (3.3) in the case of an isothermal
process, we obtain ξ̇ = Λη̇, where Λ = (α1∗/α2∗)(b1/a11). Because l = D = ḣ = ė in the problem considered, we
have

l = D = ḣ = ė = Zη̇, Z = (Λ/α1)(ii + jj) + (1/α2)kk. (3.7)
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Fig. 4. Variation of the true axial stress during heating of a previously
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Then, the second relation in (3.5) is written as

T 33η̇ = ρα2(u̇ − Θṡ). (3.8)

Using the equality ρṡ = B [B is the coefficient in (1.13)], which follows from relation (2.10) in [4] and is easily
verified for an elastic material in the case of an isothermal process and taking into account (3.7), we obtain

ρΘṡ = ΘB0η̇, B0 = β[2T ··Z + I1(L̃IV
6 ··Z)] − T,Θ ··Z.

As a result, expression (3.8) has the form T 33 = Tu + Ts, where Tu = α2(T ··Z + ΘB0) and Ts = −α2ΘB0 are the
contributions of the internal energy and entropy to the axial stress production. In Fig. 3, curve 3 corresponds to
the quantity Tu and curve 2 to the quantity Ts. It is obvious that, in the case of an isothermal process, entropy
makes the major contribution to the axial stress production. This is the well-known fact called entropic elasticity
(see, for example, [18, 19]). In this case, an insignificant change in the internal energy allows it to be considered a
function of only temperature (see, for example, [19]).

Further testing of the model was performed on the problem of heating of a previously extended bar. The
bar was extended isothermally to a certain value α2 in 1000 equal steps and then, also in 1000 equal steps, it was
heated by 100◦C at constant elongation (temperature increment in each step θ = 0.08◦C). In each step, we solved
only Eq. (3.3) for the specified value of θ. Figure 4 shows the variation of the true axial stress during the heating of
the previously extended bar. With a rise in temperature, the stress in the bar decreases at low degrees of elongation
and increases at high degrees. This effect is known as a temperature inversion (see [13, 14, 18]) and is attributed to
two factors: an increase in the positive temperature strain upon heating, resulting in a decrease in the stress in the
extended bar, and an increase in the shear modulus with a temperature rise, resulting in an increase in the tension
stress. The interplay of these factors is easy to show by a simple engineering calculation assuming small strains.

The single nonzero axial stress in the bar is T = E(Θ)(e − eΘ). Here E is Young’s modulus, e is the axial
component of the total strain tensor, eΘ = βΔΘ is the axial component of the temperature strain tensor, and
ΔΘ = Θ − Θ0. Setting E(Θ) = E0 + E1ΔΘ and taking into account that E = 3G for an incompressible material,
we obtain T = T0 + 3[G1e − β(G0 + G1ΔΘ)]ΔΘ, where T0 = 3G0e. An increase or decrease in the stress for
positive ΔΘ depends on the sign of the expression in square brackets. After the substitution of the above values
of material constants into the last relation, the sign of the expression in square brackets is determined by the
quantity e − 4.2 · 10−2(1 + 3.2 · 10−3 ΔΘ). Consequently, if e < 0.042, which corresponds to α2 =

√
1 + 2e < 1.041,

the stress decreases for ΔΘ > 0, and, if e > 0.0554, which corresponds to α2 > 1.054, the stress increases for
0◦C < ΔΘ < 100◦C. For 0.0420 < e < 0.0554, the stress first increases and then decreases in the indicated
temperature range. The calculation results for small strains (curves 1 and 2) given in Fig. 4 are in good agreement
with the estimates obtained. For curves 1 and 2, the stresses T0 calculated by the longitudinal-elasticity relation
given above are equal to 0.06 and 0.42 MPa, respectively, which also agrees with the data in Fig. 4.
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Conclusions. Thus, the thermoelastic equation of state was obtained using the formalized approach to
constructing constitutive relations for complex media at finite strains. The kinematics of the process was determined
by the superposition of small temperature strains and small elastic strains on finite thermoelastic strains. A general
representation of the constitutive relation in increments and its exact evolutionary analog were obtained. Particular
equations of state obtained using the elastic law for a slightly compressible material were given.
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